Product decompositions in finite simple groups
We propose a general conjecture on decompositions of finite simple groups as products of conjugates of an arbitrary subset. We prove this conjecture for bounded subsets of arbitrary finite simple groups, and for large subsets of groups of Lie type of bounded rank. Some of our arguments apply recent...
Main Authors: | Liebeck, M, Nikolov, N, Shalev, A |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2011
|
Registos relacionados
-
A conjecture on product decompositions in simple groups
Por: Liebeck, M, et al.
Publicado em: (2010) -
Groups of Lie type as products of SL2 subgroups
Por: Liebeck, M, et al.
Publicado em: (2011) -
Algorithms determining finite simple images of finitely presented groups
Por: Bridson, M, et al.
Publicado em: (2019) -
Finite permutation groups
Por: Liebeck, M, et al.
Publicado em: (1979) -
Finite simple groups as expanders.
Por: Kassabov, M, et al.
Publicado em: (2006)