Comparative and demographic analysis of orang-utan genomes.

'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes fr...

Full description

Bibliographic Details
Main Authors: Locke, D, Hillier, L, Warren, W, Worley, K, Nazareth, L, Muzny, D, Yang, S, Wang, Z, Chinwalla, A, Minx, P, Mitreva, M, Cook, L, Delehaunty, K, Fronick, C, Schmidt, H, Fulton, L, Fulton, R, Nelson, J, Magrini, V, Pohl, C, Graves, T, Markovic, C, Cree, A, Dinh, H, Hume, J
Format: Journal article
Language:English
Published: 2011
_version_ 1797101382943113216
author Locke, D
Hillier, L
Warren, W
Worley, K
Nazareth, L
Muzny, D
Yang, S
Wang, Z
Chinwalla, A
Minx, P
Mitreva, M
Cook, L
Delehaunty, K
Fronick, C
Schmidt, H
Fulton, L
Fulton, R
Nelson, J
Magrini, V
Pohl, C
Graves, T
Markovic, C
Cree, A
Dinh, H
Hume, J
author_facet Locke, D
Hillier, L
Warren, W
Worley, K
Nazareth, L
Muzny, D
Yang, S
Wang, Z
Chinwalla, A
Minx, P
Mitreva, M
Cook, L
Delehaunty, K
Fronick, C
Schmidt, H
Fulton, L
Fulton, R
Nelson, J
Magrini, V
Pohl, C
Graves, T
Markovic, C
Cree, A
Dinh, H
Hume, J
author_sort Locke, D
collection OXFORD
description 'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
first_indexed 2024-03-07T05:51:07Z
format Journal article
id oxford-uuid:e8e9a8b2-4e6e-4599-b09f-1aebf8dec67d
institution University of Oxford
language English
last_indexed 2024-03-07T05:51:07Z
publishDate 2011
record_format dspace
spelling oxford-uuid:e8e9a8b2-4e6e-4599-b09f-1aebf8dec67d2022-03-27T10:50:19ZComparative and demographic analysis of orang-utan genomes.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:e8e9a8b2-4e6e-4599-b09f-1aebf8dec67dEnglishSymplectic Elements at Oxford2011Locke, DHillier, LWarren, WWorley, KNazareth, LMuzny, DYang, SWang, ZChinwalla, AMinx, PMitreva, MCook, LDelehaunty, KFronick, CSchmidt, HFulton, LFulton, RNelson, JMagrini, VPohl, CGraves, TMarkovic, CCree, ADinh, HHume, J'Orang-utan' is derived from a Malay term meaning 'man of the forest' and aptly describes the southeast Asian great apes native to Sumatra and Borneo. The orang-utan species, Pongo abelii (Sumatran) and Pongo pygmaeus (Bornean), are the most phylogenetically distant great apes from humans, thereby providing an informative perspective on hominid evolution. Here we present a Sumatran orang-utan draft genome assembly and short read sequence data from five Sumatran and five Bornean orang-utan genomes. Our analyses reveal that, compared to other primates, the orang-utan genome has many unique features. Structural evolution of the orang-utan genome has proceeded much more slowly than other great apes, evidenced by fewer rearrangements, less segmental duplication, a lower rate of gene family turnover and surprisingly quiescent Alu repeats, which have played a major role in restructuring other primate genomes. We also describe a primate polymorphic neocentromere, found in both Pongo species, emphasizing the gradual evolution of orang-utan genome structure. Orang-utans have extremely low energy usage for a eutherian mammal, far lower than their hominid relatives. Adding their genome to the repertoire of sequenced primates illuminates new signals of positive selection in several pathways including glycolipid metabolism. From the population perspective, both Pongo species are deeply diverse; however, Sumatran individuals possess greater diversity than their Bornean counterparts, and more species-specific variation. Our estimate of Bornean/Sumatran speciation time, 400,000 years ago, is more recent than most previous studies and underscores the complexity of the orang-utan speciation process. Despite a smaller modern census population size, the Sumatran effective population size (N(e)) expanded exponentially relative to the ancestral N(e) after the split, while Bornean N(e) declined over the same period. Overall, the resources and analyses presented here offer new opportunities in evolutionary genomics, insights into hominid biology, and an extensive database of variation for conservation efforts.
spellingShingle Locke, D
Hillier, L
Warren, W
Worley, K
Nazareth, L
Muzny, D
Yang, S
Wang, Z
Chinwalla, A
Minx, P
Mitreva, M
Cook, L
Delehaunty, K
Fronick, C
Schmidt, H
Fulton, L
Fulton, R
Nelson, J
Magrini, V
Pohl, C
Graves, T
Markovic, C
Cree, A
Dinh, H
Hume, J
Comparative and demographic analysis of orang-utan genomes.
title Comparative and demographic analysis of orang-utan genomes.
title_full Comparative and demographic analysis of orang-utan genomes.
title_fullStr Comparative and demographic analysis of orang-utan genomes.
title_full_unstemmed Comparative and demographic analysis of orang-utan genomes.
title_short Comparative and demographic analysis of orang-utan genomes.
title_sort comparative and demographic analysis of orang utan genomes
work_keys_str_mv AT locked comparativeanddemographicanalysisoforangutangenomes
AT hillierl comparativeanddemographicanalysisoforangutangenomes
AT warrenw comparativeanddemographicanalysisoforangutangenomes
AT worleyk comparativeanddemographicanalysisoforangutangenomes
AT nazarethl comparativeanddemographicanalysisoforangutangenomes
AT muznyd comparativeanddemographicanalysisoforangutangenomes
AT yangs comparativeanddemographicanalysisoforangutangenomes
AT wangz comparativeanddemographicanalysisoforangutangenomes
AT chinwallaa comparativeanddemographicanalysisoforangutangenomes
AT minxp comparativeanddemographicanalysisoforangutangenomes
AT mitrevam comparativeanddemographicanalysisoforangutangenomes
AT cookl comparativeanddemographicanalysisoforangutangenomes
AT delehauntyk comparativeanddemographicanalysisoforangutangenomes
AT fronickc comparativeanddemographicanalysisoforangutangenomes
AT schmidth comparativeanddemographicanalysisoforangutangenomes
AT fultonl comparativeanddemographicanalysisoforangutangenomes
AT fultonr comparativeanddemographicanalysisoforangutangenomes
AT nelsonj comparativeanddemographicanalysisoforangutangenomes
AT magriniv comparativeanddemographicanalysisoforangutangenomes
AT pohlc comparativeanddemographicanalysisoforangutangenomes
AT gravest comparativeanddemographicanalysisoforangutangenomes
AT markovicc comparativeanddemographicanalysisoforangutangenomes
AT creea comparativeanddemographicanalysisoforangutangenomes
AT dinhh comparativeanddemographicanalysisoforangutangenomes
AT humej comparativeanddemographicanalysisoforangutangenomes