Improving Photometric Redshift Estimation using GPz: size information, post processing and improved photometry
The next generation of large scale imaging surveys (such as those conducted with the Large Synoptic Survey Telescope and Euclid) will require accurate photometric redshifts in order to optimally extract cosmological information. Gaussian Processes for photometric redshift estimation (GPz) is a promi...
主要な著者: | Gomes, Z, Jarvis, M, Almosallam, I, Roberts, S |
---|---|
フォーマット: | Journal article |
出版事項: |
Oxford University Press
2017
|
類似資料
-
GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
著者:: Almosallam, I, 等
出版事項: (2016) -
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
著者:: Almosallam, I, 等
出版事項: (2016) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
著者:: Almosallam, I, 等
出版事項: (2015) -
CFHTLenS: Improving the quality of photometric redshifts with precision photometry
著者:: Hildebrandt, H, 等
出版事項: (2012) -
CFHTLenS: Improving the quality of photometric redshifts with precision
photometry
著者:: Hildebrandt, H, 等
出版事項: (2011)