Extracting axial depth and trajectory trend using astigmatism, Gaussian fitting, and CNNs for protein tracking
Accurate analysis of vesicle trafficking in live cells is challenging for a number of reasons: varying appearance, complex protein movement patterns, and imaging conditions. To allow fast image acquisition, we study how employing an astigmatism can be utilized for obtaining additional information th...
主要な著者: | Delas Penas, K, Dmitrieva, M, Lefebvre, J, Zenner, H, Allgeyer, E, Booth, M, St Johnston, D, Rittscher, J |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2020
|
類似資料
-
Short trajectory segmentation with 1D UNET Framework: application to secretory vesicle dynamics
著者:: Dmitrieva, M, 等
出版事項: (2020) -
Annotation-free learning of a spatio-temporal manifold of the cell life cycle
著者:: Kristofer delas Peñas, 等
出版事項: (2023-01-01) -
Single-molecule localization microscopy reconstruction using Noise2Noise for super-resolution imaging of actin filaments
著者:: Lefebvre, J, 等
出版事項: (2020) -
Protein tracking by CNN-based candidate pruning and two-step linking with Bayesian network
著者:: Dmitrieva, M, 等
出版事項: (2019) -
Orbital angular momentum of an astigmatic Hermite-Gaussian beam
著者:: Victor Kotlyar, 等
出版事項: (2018-02-01)