Fourier policy gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the lo...
المؤلفون الرئيسيون: | Fellows, M, Ciosek, K, Whiteson, S |
---|---|
التنسيق: | Conference item |
منشور في: |
Journal of Machine Learning Research
2018
|
مواد مشابهة
-
Expected policy gradients
حسب: Ciosek, K, وآخرون
منشور في: (2018) -
Expected policy gradients for reinforcement learning
حسب: Ciosek, K, وآخرون
منشور في: (2020) -
OFFER: Off-environment reinforcement learning
حسب: Ciosek, K, وآخرون
منشور في: (2017) -
Counterfactual multi−agent policy gradients
حسب: Foerster, J, وآخرون
منشور في: (2018) -
Fast efficient hyperparameter tuning for policy gradient methods
حسب: Paul, S, وآخرون
منشور في: (2019)