Fourier policy gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the lo...
Main Authors: | Fellows, M, Ciosek, K, Whiteson, S |
---|---|
פורמט: | Conference item |
יצא לאור: |
Journal of Machine Learning Research
2018
|
פריטים דומים
-
Expected policy gradients
מאת: Ciosek, K, et al.
יצא לאור: (2018) -
Expected policy gradients for reinforcement learning
מאת: Ciosek, K, et al.
יצא לאור: (2020) -
OFFER: Off-environment reinforcement learning
מאת: Ciosek, K, et al.
יצא לאור: (2017) -
Counterfactual multi−agent policy gradients
מאת: Foerster, J, et al.
יצא לאור: (2018) -
Fast efficient hyperparameter tuning for policy gradient methods
מאת: Paul, S, et al.
יצא לאור: (2019)