Fourier policy gradients
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the lo...
Những tác giả chính: | Fellows, M, Ciosek, K, Whiteson, S |
---|---|
Định dạng: | Conference item |
Được phát hành: |
Journal of Machine Learning Research
2018
|
Những quyển sách tương tự
-
Expected policy gradients
Bằng: Ciosek, K, et al.
Được phát hành: (2018) -
Expected policy gradients for reinforcement learning
Bằng: Ciosek, K, et al.
Được phát hành: (2020) -
OFFER: Off-environment reinforcement learning
Bằng: Ciosek, K, et al.
Được phát hành: (2017) -
Counterfactual multi−agent policy gradients
Bằng: Foerster, J, et al.
Được phát hành: (2018) -
Fast efficient hyperparameter tuning for policy gradient methods
Bằng: Paul, S, et al.
Được phát hành: (2019)