A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof
We consider arithmetic varieties endowed with an action of the group scheme of n-th roots of unity and we define equivariant arithmetic K 0-theory for these varieties. We use the equivariant analytic torsion to define direct image maps in this context and we prove a Riemann-Roch theorem for the natu...
Auteurs principaux: | Köhler, K, Roessler, D |
---|---|
Format: | Journal article |
Publié: |
Springer Verlag
2001
|
Documents similaires
-
A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
par: Köhler, K, et autres
Publié: (2002) -
Un théorème du point fixe de Lefschetz en géométrie d'Arakelov
par: Köhler, K, et autres
Publié: (1998) -
A fixed point formula of Lefschetz type in Arakelov geometry IV: The modular height of C.M. abelian varieties
par: Koehler, K, et autres
Publié: (2003) -
An Adams-Riemann-Roch theorem in Arakelov geometry
par: Roessler, D
Publié: (1999) -
Un théorème d’Adams-Riemann-Roch en géométrie d’Arakelov
par: Roessler, D
Publié: (1996)