A fixed point formula of Lefschetz type in Arakelov geometry I: statement and proof
We consider arithmetic varieties endowed with an action of the group scheme of n-th roots of unity and we define equivariant arithmetic K 0-theory for these varieties. We use the equivariant analytic torsion to define direct image maps in this context and we prove a Riemann-Roch theorem for the natu...
Main Authors: | Köhler, K, Roessler, D |
---|---|
Formato: | Journal article |
Publicado: |
Springer Verlag
2001
|
Títulos similares
-
A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula
por: Köhler, K, et al.
Publicado: (2002) -
Un théorème du point fixe de Lefschetz en géométrie d'Arakelov
por: Köhler, K, et al.
Publicado: (1998) -
A fixed point formula of Lefschetz type in Arakelov geometry IV: The modular height of C.M. abelian varieties
por: Koehler, K, et al.
Publicado: (2003) -
An Adams-Riemann-Roch theorem in Arakelov geometry
por: Roessler, D
Publicado: (1999) -
Un théorème d’Adams-Riemann-Roch en géométrie d’Arakelov
por: Roessler, D
Publicado: (1996)