Stopping criteria for iterations in finite element methods

This work extends the results of Arioli [1], [2] on stopping criteria for iterative solution methods for linear finite element problems to the case of nonsymmetric positive-definite problems. We show that the residual measured in the norm induced by the symmetric part of the inverse of the system ma...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Arioli, M, Loghin, D, Wathen, A
Формат: Journal article
Хэл сонгох:English
Хэвлэсэн: 2005
_version_ 1826302984562147328
author Arioli, M
Loghin, D
Wathen, A
author_facet Arioli, M
Loghin, D
Wathen, A
author_sort Arioli, M
collection OXFORD
description This work extends the results of Arioli [1], [2] on stopping criteria for iterative solution methods for linear finite element problems to the case of nonsymmetric positive-definite problems. We show that the residual measured in the norm induced by the symmetric part of the inverse of the system matrix is relevant to convergence in a finite element context. We then use Krylov solvers to provide alternative ways of calculating or estimating this quantity and present numerical experiments which validate our criteria. © Springer-Verlag 2004.
first_indexed 2024-03-07T05:55:44Z
format Journal article
id oxford-uuid:ea6b6ed3-71e7-4ac4-84d0-4aa7df38882f
institution University of Oxford
language English
last_indexed 2024-03-07T05:55:44Z
publishDate 2005
record_format dspace
spelling oxford-uuid:ea6b6ed3-71e7-4ac4-84d0-4aa7df38882f2022-03-27T11:02:13ZStopping criteria for iterations in finite element methodsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ea6b6ed3-71e7-4ac4-84d0-4aa7df38882fEnglishSymplectic Elements at Oxford2005Arioli, MLoghin, DWathen, AThis work extends the results of Arioli [1], [2] on stopping criteria for iterative solution methods for linear finite element problems to the case of nonsymmetric positive-definite problems. We show that the residual measured in the norm induced by the symmetric part of the inverse of the system matrix is relevant to convergence in a finite element context. We then use Krylov solvers to provide alternative ways of calculating or estimating this quantity and present numerical experiments which validate our criteria. © Springer-Verlag 2004.
spellingShingle Arioli, M
Loghin, D
Wathen, A
Stopping criteria for iterations in finite element methods
title Stopping criteria for iterations in finite element methods
title_full Stopping criteria for iterations in finite element methods
title_fullStr Stopping criteria for iterations in finite element methods
title_full_unstemmed Stopping criteria for iterations in finite element methods
title_short Stopping criteria for iterations in finite element methods
title_sort stopping criteria for iterations in finite element methods
work_keys_str_mv AT ariolim stoppingcriteriaforiterationsinfiniteelementmethods
AT loghind stoppingcriteriaforiterationsinfiniteelementmethods
AT wathena stoppingcriteriaforiterationsinfiniteelementmethods