Certifying ensembles: a general certification theory with s-lipschitzness

Improving and guaranteeing the robustness of deep learning models has been a topic of intense research. Ensembling, which combines several classifiers to provide a better model, has shown to be beneficial for generalisation, uncertainty estimation, calibration, and mitigating the effects of concept...

Full description

Bibliographic Details
Main Authors: Petrov, A, Eiras, F, Sanyal, A, Torr, PHS, Bibi, A
Format: Conference item
Language:English
Published: Journal of Machine Learning Research 2023
Description
Summary:Improving and guaranteeing the robustness of deep learning models has been a topic of intense research. Ensembling, which combines several classifiers to provide a better model, has shown to be beneficial for generalisation, uncertainty estimation, calibration, and mitigating the effects of concept drift. However, the impact of ensembling on certified robustness is less well understood. In this work, we generalise Lipschitz continuity by introducing S-Lipschitz classifiers, which we use to analyse the theoretical robustness of ensembles. Our results are precise conditions when ensembles of robust classifiers are more robust than any constituent classifier, as well as conditions when they are less robust.