Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis

<p><strong>Background:</strong> Higher circulating levels of the branched chain amino acids (BCAA; i.e. isoleucine, leucine and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human g...

全面介紹

書目詳細資料
Main Authors: Lotta, L, Scott, R, Sharp, S, Burgess, S, Luan, J, Tillin, T, Schmidt, A, Imamura, F, Stewart, I, Perry, J, Marney, L, Koulman, A, Karoly, E, Forouhi, N, Sjögren, R, Näslund, E, Zierath, J, Krook, A, Savage, D, Griffin, J, Chaturvedi, N, Hingorani, A, Khaw, K, Barroso, I, McCarthy, M, O'Rahilly, S, Wareham, N, Langenberg, C
格式: Journal article
出版: Public Library of Science 2016
_version_ 1826303108044554240
author Lotta, L
Scott, R
Sharp, S
Burgess, S
Luan, J
Tillin, T
Schmidt, A
Imamura, F
Stewart, I
Perry, J
Marney, L
Koulman, A
Karoly, E
Forouhi, N
Sjögren, R
Näslund, E
Zierath, J
Krook, A
Savage, D
Griffin, J
Chaturvedi, N
Hingorani, A
Khaw, K
Barroso, I
McCarthy, M
O'Rahilly, S
Wareham, N
Langenberg, C
author_facet Lotta, L
Scott, R
Sharp, S
Burgess, S
Luan, J
Tillin, T
Schmidt, A
Imamura, F
Stewart, I
Perry, J
Marney, L
Koulman, A
Karoly, E
Forouhi, N
Sjögren, R
Näslund, E
Zierath, J
Krook, A
Savage, D
Griffin, J
Chaturvedi, N
Hingorani, A
Khaw, K
Barroso, I
McCarthy, M
O'Rahilly, S
Wareham, N
Langenberg, C
author_sort Lotta, L
collection OXFORD
description <p><strong>Background:</strong> Higher circulating levels of the branched chain amino acids (BCAA; i.e. isoleucine, leucine and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.</p> <p><strong>Methods, findings and limitations:</strong> Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p&lt;5 x 10-08). The strongest signal was 21kb upstream of the PPM1K gene (beta in standard deviations of leucine per allele=0.08; p=3.9 x 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically-predicted difference of 1 standard deviation in amino acid levels was associated with an odds ratio of type 2 diabetes of 1.44 (95% confidence interval, 1.26-1.65, p=9.5 x 10-08) for isoleucine, 1.85 (1.41-2.42, p=7.3 x 10-06) for leucine and 1.54 (1.28-1.84, p=4.2 x 10-06) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxydation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect their metabolism are implicated in type 2 diabetes.</p> <p><strong>Conclusions:</strong> Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.</p>
first_indexed 2024-03-07T05:57:37Z
format Journal article
id oxford-uuid:eb11a2c5-abd5-42f6-88c0-fde087b6bd29
institution University of Oxford
last_indexed 2024-03-07T05:57:37Z
publishDate 2016
publisher Public Library of Science
record_format dspace
spelling oxford-uuid:eb11a2c5-abd5-42f6-88c0-fde087b6bd292022-03-27T11:07:02ZGenetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysisJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:eb11a2c5-abd5-42f6-88c0-fde087b6bd29Symplectic Elements at OxfordPublic Library of Science2016Lotta, LScott, RSharp, SBurgess, SLuan, JTillin, TSchmidt, AImamura, FStewart, IPerry, JMarney, LKoulman, AKaroly, EForouhi, NSjögren, RNäslund, EZierath, JKrook, ASavage, DGriffin, JChaturvedi, NHingorani, AKhaw, KBarroso, IMcCarthy, MO'Rahilly, SWareham, NLangenberg, C<p><strong>Background:</strong> Higher circulating levels of the branched chain amino acids (BCAA; i.e. isoleucine, leucine and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question.</p> <p><strong>Methods, findings and limitations:</strong> Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p&lt;5 x 10-08). The strongest signal was 21kb upstream of the PPM1K gene (beta in standard deviations of leucine per allele=0.08; p=3.9 x 10-25), encoding an activator of the mitochondrial branched-chain alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-limiting step in BCAA catabolism. In up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically-predicted difference of 1 standard deviation in amino acid levels was associated with an odds ratio of type 2 diabetes of 1.44 (95% confidence interval, 1.26-1.65, p=9.5 x 10-08) for isoleucine, 1.85 (1.41-2.42, p=7.3 x 10-06) for leucine and 1.54 (1.28-1.84, p=4.2 x 10-06) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxydation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect their metabolism are implicated in type 2 diabetes.</p> <p><strong>Conclusions:</strong> Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.</p>
spellingShingle Lotta, L
Scott, R
Sharp, S
Burgess, S
Luan, J
Tillin, T
Schmidt, A
Imamura, F
Stewart, I
Perry, J
Marney, L
Koulman, A
Karoly, E
Forouhi, N
Sjögren, R
Näslund, E
Zierath, J
Krook, A
Savage, D
Griffin, J
Chaturvedi, N
Hingorani, A
Khaw, K
Barroso, I
McCarthy, M
O'Rahilly, S
Wareham, N
Langenberg, C
Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title_full Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title_fullStr Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title_full_unstemmed Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title_short Genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes: A Mendelian randomisation analysis
title_sort genetic predisposition to an impaired metabolism of the branched chain amino acids and risk of type 2 diabetes a mendelian randomisation analysis
work_keys_str_mv AT lottal geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT scottr geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT sharps geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT burgesss geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT luanj geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT tillint geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT schmidta geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT imamuraf geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT stewarti geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT perryj geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT marneyl geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT koulmana geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT karolye geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT forouhin geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT sjogrenr geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT naslunde geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT zierathj geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT krooka geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT savaged geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT griffinj geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT chaturvedin geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT hingorania geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT khawk geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT barrosoi geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT mccarthym geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT orahillys geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT warehamn geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis
AT langenbergc geneticpredispositiontoanimpairedmetabolismofthebranchedchainaminoacidsandriskoftype2diabetesamendelianrandomisationanalysis