Application of metabolite profiling to the identification of traits in a population of tomato introgression lines.

Naturally occurring variation in wild species can be used to increase the genetic diversity of cultivated crops and improve agronomic value. Populations of introgression lines carrying wild species alleles afford an opportunity to identify traits associated with the introgressed regions, and facilit...

Full description

Bibliographic Details
Main Authors: Overy, SA, Walker, H, Malone, S, Howard, T, Baxter, C, Sweetlove, L, Hill, SA, Quick, W
Format: Journal article
Language:English
Published: 2005
Description
Summary:Naturally occurring variation in wild species can be used to increase the genetic diversity of cultivated crops and improve agronomic value. Populations of introgression lines carrying wild species alleles afford an opportunity to identify traits associated with the introgressed regions, and facilitate characterization of the biochemistry and genetics underlying these phenotypes. Understanding plant metabolic pathways and the interactions between genes, phenotype, and environment is fundamental to functional genomics. Successful analysis of the complex network of plant metabolism requires analytical methods able to record information on as many metabolites as possible. Metabolite profiling is used to provide a snapshot of the metabolome in samples which differ in a known factor such as genetic background. Differences between the metabolite profiles can identify those metabolites/metabolic pathways affected by the introgression and allow genetic maps for metabolic alterations to be established. A Time-of-Flight Mass Spectrometry method is presented, with associated data reduction, used for profiling aqueous metabolites fom tomato. Analysis of ripe fruits of two tomato species, Lycopersicon esculentum and L. pennellii, showed differences in the amounts of many metabolites, including organic acids and sugars. Six introgression lines, L. pennellii introgressions within L. esculentum, were also examined and showed that Principal Component Analysis can reveal subtle differences in metabolism of the introgressed lines when compared to their parents.