Monte Carlo algorithsm for Bayesian inference
<p>This thesis addresses several issues appearing in Bayesian statistics. Firstly, computations for approximating Bayesian posteriors are often performed using Markov chain Monte Carlo (MCMC) methods. However, standard MCMC algorithms tend to perform poorly when the posterior distribution has...
Главный автор: | Pompe, E |
---|---|
Другие авторы: | Holmes, C |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2021
|
Схожие документы
-
Markov chain Monte Carlo : stochastic simulation for Bayesian inference /
по: 360681 Gamerman, Dani, и др.
Опубликовано: (2006) -
Measuring diachronic sense change: new models and Monte Carlo methods for Bayesian inference
по: Zafar, S, и др.
Опубликовано: (2022) -
Sequential Monte Carlo methods for demographic inference
по: Henderson, D
Опубликовано: (2017) -
Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
по: Daly, A, и др.
Опубликовано: (2017) -
On sequential Monte Carlo sampling methods for Bayesian filtering
по: Doucet, A, и др.
Опубликовано: (2000)