Unsupervised learning of object landmarks by factorized spatial embeddings
Learning automatically the structure of object categories remains an important open problem in computer vision. In this paper, we propose a novel unsupervised approach that can discover and learn landmarks in object categories, thus characterizing their structure. Our approach is based on factorizin...
المؤلفون الرئيسيون: | Thewlis, J, Bilen, H, Vedaldi, A |
---|---|
التنسيق: | Conference item |
منشور في: |
IEEE
2017
|
مواد مشابهة
-
Unsupervised learning of landmarks by descriptor vector exchange
حسب: Thewlis, J, وآخرون
منشور في: (2020) -
Modelling and unsupervised learning of symmetric deformable object categories
حسب: Thewlis, J, وآخرون
منشور في: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
حسب: Thewlis, J, وآخرون
منشور في: (2017) -
Unsupervised learning of object landmarks through conditional image generation
حسب: Jakab, T, وآخرون
منشور في: (2018) -
Unsupervised learning of probably symmetric deformable 3D objects from images in the wild
حسب: Wu, S, وآخرون
منشور في: (2021)