A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
The generalised minimal residual (GMRES) method is a common choice for solving the large non-symmetric linear systems that arise when numerically computing solutions of incompressible nonlinear elasticity problems using the finite element method. Analytic results on the performance of GMRES are avai...
Главные авторы: | Pathmanathan, P, Whiteley, J, Chapman, S, Gavaghan, D |
---|---|
Формат: | Journal article |
Опубликовано: |
2010
|
Схожие документы
-
Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
по: Pathmanathan, P, и др.
Опубликовано: (2010) -
A Note on the Effect of the Choice of Weak Form on GMRES Convergence for Incompressible Nonlinear Elasticity Problems
по: Pathmanathan, P, и др.
Опубликовано: (2010) -
How descriptive are GMRES convergence bounds?
по: Embree, M
Опубликовано: (1999) -
A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations
по: Whiteley, J
Опубликовано: (2017) -
Inverse membrane problems in elasticity
по: Pathmanathan, P, и др.
Опубликовано: (2009)