Interactions between subunits a and b in the rotary ATP synthase as determined by cross-linking

The interaction of the membrane traversing stator subunits a and b of the rotary ATP synthase was probed by substitution of a single Cys into each subunit with subsequent Cu2+ catalyzed cross-linking. Extensive interaction between the transmembrane (TM) region of one b subunit and TM2 of subunit a w...

Full description

Bibliographic Details
Main Authors: DeLeon-Rangel, J, Ishmukhametov, RR, Jiang, W, Fillingame, RH, Vik, SB
Format: Journal article
Language:English
Published: Elsevier 2013
Description
Summary:The interaction of the membrane traversing stator subunits a and b of the rotary ATP synthase was probed by substitution of a single Cys into each subunit with subsequent Cu2+ catalyzed cross-linking. Extensive interaction between the transmembrane (TM) region of one b subunit and TM2 of subunit a was indicated by cross-linking with 6 Cys pairs introduced into these regions. Additional disulfide cross-linking was observed between the N-terminus of subunit b and the periplasmic loop connecting TM4 and TM5 of subunit a. Finally, benzophenone-4-maleimide derivatized Cys in the 2–3 periplasmic loop of subunit a were shown to cross-link with the periplasmic N-terminal region of subunit b. These experiments help to define the juxtaposition of subunits b and a in the ATP synthase.