A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting
We present a hybrid model combining two types of probabilistic forecast, a kernel density estimation (KDE) and a quantile regression, as part of the load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom 2014). The KDE method is initially implemented with a time-decay param...
Hlavní autoři: | , |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Elsevier
2015
|
Témata: |