Lessons learned: From dye-sensitized solar cells to all-solid-state hybrid devices

The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-s...

Descripció completa

Dades bibliogràfiques
Autors principals: Docampo, P, Guldin, S, Leijtens, T, Noel, N, Steiner, U, Snaith, H
Format: Journal article
Publicat: 2014
Descripció
Sumari:The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms. The field of solution-processed photovoltaic cells is currently in its second spring, with solid-state devices incorporating novel inorganic absorbers reaching record efficiencies. This review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials: concepts applicable to many next-generation device platforms. © 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim.