On the size of finite rational matrix semigroups

Let n be a positive integer and M a set of rational n × n-matrices such that M generates a finite multiplicative semigroup. We show that any matrix in the semigroup is a product of matrices in M whose length is at most 2^{n (2 n + 3)} g(n)^{n+1} ∈ 2^{O(n² log n)}, where g(n) is the maximum order of...

Full description

Bibliographic Details
Main Authors: Bumpus, G, Haase, C, Kiefer, S, Stoienescu, P-I, Tanner, J
Format: Conference item
Language:English
Published: Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2020
Description
Summary:Let n be a positive integer and M a set of rational n × n-matrices such that M generates a finite multiplicative semigroup. We show that any matrix in the semigroup is a product of matrices in M whose length is at most 2^{n (2 n + 3)} g(n)^{n+1} ∈ 2^{O(n² log n)}, where g(n) is the maximum order of finite groups over rational n × n-matrices. This result implies algorithms with an elementary running time for deciding finiteness of weighted automata over the rationals and for deciding reachability in affine integer vector addition systems with states with the finite monoid property.