Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals

We extend the recent radial symmetry results by Pisante [23] and Millot & Pisante [19] (who show that all entire solutions of the vector-valued Ginzburg-Landau equations in superconductivity theory, in the three-dimensional space, are comprised of the well-known class of equivariant solution...

Full description

Bibliographic Details
Main Authors: Henao, D, Majumdar, A
Format: Journal article
Published: 2011
_version_ 1797102582536077312
author Henao, D
Majumdar, A
author_facet Henao, D
Majumdar, A
author_sort Henao, D
collection OXFORD
description We extend the recent radial symmetry results by Pisante [23] and Millot & Pisante [19] (who show that all entire solutions of the vector-valued Ginzburg-Landau equations in superconductivity theory, in the three-dimensional space, are comprised of the well-known class of equivariant solutions) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures.
first_indexed 2024-03-07T06:07:58Z
format Journal article
id oxford-uuid:ee7e4337-22ff-4173-b5d7-25c919f54cbd
institution University of Oxford
last_indexed 2024-03-07T06:07:58Z
publishDate 2011
record_format dspace
spelling oxford-uuid:ee7e4337-22ff-4173-b5d7-25c919f54cbd2022-03-27T11:33:08ZSymmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystalsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ee7e4337-22ff-4173-b5d7-25c919f54cbdMathematical Institute - ePrints2011Henao, DMajumdar, AWe extend the recent radial symmetry results by Pisante [23] and Millot & Pisante [19] (who show that all entire solutions of the vector-valued Ginzburg-Landau equations in superconductivity theory, in the three-dimensional space, are comprised of the well-known class of equivariant solutions) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures.
spellingShingle Henao, D
Majumdar, A
Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title_full Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title_fullStr Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title_full_unstemmed Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title_short Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals
title_sort symmetry of uniaxial global landau de gennes minimizers in the theory of nematic liquid crystals
work_keys_str_mv AT henaod symmetryofuniaxialgloballandaudegennesminimizersinthetheoryofnematicliquidcrystals
AT majumdara symmetryofuniaxialgloballandaudegennesminimizersinthetheoryofnematicliquidcrystals