Automated training data generation for microscopy focus classification
Image focus quality is of utmost importance in digital microscopes because the pathologist cannot accurately characterize the tissue state without focused images. We propose to train a classifier to measure the focus quality of microscopy scans based on an extensive set of image features. However, c...
Auteurs principaux: | Gao, D, Padfield, D, Rittscher, J, McKay, R |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2010
|
Documents similaires
-
Automated training data generation for microscopy focus classification.
par: Gao, D, et autres
Publié: (2010) -
Spatio-temporal cell segmentation and tracking for automated screening
par: Padfield, D, et autres
Publié: (2008) -
Quantitative biological studies enabled by robust cell tracking
par: Padfield, D, et autres
Publié: (2011) -
Coupled minimum-cost flow cell tracking
par: Padfield, D, et autres
Publié: (2009) -
Coupled minimum-cost flow cell tracking.
par: Padfield, D, et autres
Publié: (2009)