Machine learning techniques for the prediction of indoor gamma-ray dose rates - strengths, weaknesses and implications for epidemiology
We investigate methods that improve the estimation of indoor gamma ray dose rates at locations where measurements had not been made. These new predictions use a greater range of modelling techniques and larger variety of explanatory variables than our previous examinations of this subject. Specifica...
Päätekijät: | , , , , |
---|---|
Aineistotyyppi: | Journal article |
Kieli: | English |
Julkaistu: |
Elsevier
2024
|