Joint training of generic CNN-CRF models with stochastic optimization
We propose a new CNN-CRF end-to-end learning framework, which is based on joint stochastic optimization with respect to both Convolutional Neural Network (CNN) and Conditional Random Field (CRF) parameters. While stochastic gradient descent is a standard technique for CNN training, it was not used f...
Hauptverfasser: | Kirillov, A, Schlesinger, D, Zheng, S, Savchynskyy, B, Torr, P, Rother, C |
---|---|
Format: | Conference item |
Veröffentlicht: |
Springer, Cham
2017
|
Ähnliche Einträge
Ähnliche Einträge
-
Conditional random fields meet deep neural networks for semantic segmentation: combining probabilistic graphical models with deep learning for structured prediction
von: Arnab, A, et al.
Veröffentlicht: (2018) -
Study on MRI Medical Image Segmentation Technology Based on CNN-CRF Model
von: Naiqin Feng, et al.
Veröffentlicht: (2020-01-01) -
Efficient continuous relaxations for dense CRF
von: Bunel, R, et al.
Veröffentlicht: (2016) -
A projected gradient descent method for CRF inference allowing end-to-end training of arbitrary pairwise potentials
von: Larsson, M, et al.
Veröffentlicht: (2018) -
Semantic Segmentation of Remote Sensing Imagery Based on Multiscale Deformable CNN and DenseCRF
von: Xiang Cheng, et al.
Veröffentlicht: (2023-02-01)