Relevance of dephasing processes for the ultrafast rise of emission from resonantly created excitons in quantum wells
We present a comparative study of time-integrated four-wave-mixing and femtosecond emission under resonant excitation on excitons in weakly disordered GaAs quantum wells. At highest exciton densities when dephasing dominates the spectral width (homogeneous broadening), we find that the rise time of...
Main Authors: | , , , , , |
---|---|
Format: | Conference item |
Published: |
1997
|
Summary: | We present a comparative study of time-integrated four-wave-mixing and femtosecond emission under resonant excitation on excitons in weakly disordered GaAs quantum wells. At highest exciton densities when dephasing dominates the spectral width (homogeneous broadening), we find that the rise time of the incoherent luminescence signal is given by T-2/2. At lowest densities, optical coherence times approach the exciton radiative lifetime (15 to 20 ps). This confirms our previous result that coherent resonant Rayleigh scattering is responsible for the short rise time of the excitonic emission. We also show clear evidence for dephasing due to exciton-phonon interaction, as the rise time of the emission decreases dramatically when the sample temperature is increased. |
---|