Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps
Nonlinear independent component analysis is combined with diffusion-map data analysis techniques to detect good observables in high-dimensional dynamic data. These detections are achieved by integrating local principal component analysis of simulation bursts by using eigenvectors of a Markov matrix...
Главные авторы: | Singer, A, Erban, R, Kevrekidis, I, Coifman, R |
---|---|
Формат: | Journal article |
Опубликовано: |
PNAS
2009
|
Схожие документы
-
Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps.
по: Singer, A, и др.
Опубликовано: (2009) -
Variable-free exploration of stochastic models: a gene regulatory network example.
по: Erban, R, и др.
Опубликовано: (2007) -
ADM-CLE approach for detecting slow variables in continuous time Markov chains and dynamic data
по: Cucuringu, M, и др.
Опубликовано: (2017) -
ADM-CLE approach for detecting slow variables in continuous time Markov
chains and dynamic data
по: Cucuringu, M, и др.
Опубликовано: (2015) -
A constrained approach to multiscale stochastic simulation of chemically reacting systems.
по: Cotter, S, и др.
Опубликовано: (2011)