Using machine learning to predict anticoagulation control in atrial fibrillation: a UK Clinical Practice Research Datalink study
<strong>Objective<br></strong> To investigate the predictive performance of machine learning (ML) algorithms for estimating anticoagulation control in patients with atrial fibrillation (AF) who are treated with warfarin. <br><strong> Methods<br></strong> Thi...
Hauptverfasser: | Gordon, J, Norman, M, Hurst, M, Mason, T, Dickerson, C, Sandler, B, Pollock, KG, Farooqui, U, Groves, L, Tsang, C, Clifton, D, Bakhai, A, Hill, NR |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Elsevier
2021
|
Ähnliche Einträge
Ähnliche Einträge
-
Using machine learning to predict anticoagulation control in atrial fibrillation: A UK Clinical Practice Research Datalink study
von: Jason Gordon, et al.
Veröffentlicht: (2021-01-01) -
Identification of undiagnosed atrial fibrillation using a machine learning risk-prediction algorithm and diagnostic testing (PULsE-AI) in primary care: a multi-centre randomized controlled trial in England
von: Hill, NR, et al.
Veröffentlicht: (2022) -
Use of oral anticoagulants in older people with atrial fibrillation in UK general practice: protocol for a cohort study using the Clinical Practice Research Datalink (CPRD) database
von: Julia Snowball, et al.
Veröffentlicht: (2019-12-01) -
Identification of undiagnosed atrial fibrillation using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI) in primary care: cost-effectiveness of a screening strategy evaluated in a randomized controlled trial in England
von: Hill, NR, et al.
Veröffentlicht: (2022) -
Comparison of oral anticoagulants for stroke prevention in atrial fibrillation using the UK clinical practice research Datalink Aurum: A reference trial (ARISTOTLE) emulation study.
von: Emma Maud Powell, et al.
Veröffentlicht: (2024-08-01)