The infinite factorial hidden Markov model

We introduce a new probability distribution over a potentially infinite number of binary Markov chains which we call the Markov Indian buffet process. This process extends the IBP to allow temporal dependencies in the hidden variables. We use this stochastic process to build a nonparametric extensio...

Full description

Bibliographic Details
Main Authors: Van Gael, J, Teh, Y, Ghahramani, Z
Format: Journal article
Language:English
Published: 2009
_version_ 1797102981357764608
author Van Gael, J
Teh, Y
Ghahramani, Z
author_facet Van Gael, J
Teh, Y
Ghahramani, Z
author_sort Van Gael, J
collection OXFORD
description We introduce a new probability distribution over a potentially infinite number of binary Markov chains which we call the Markov Indian buffet process. This process extends the IBP to allow temporal dependencies in the hidden variables. We use this stochastic process to build a nonparametric extension of the factorial hidden Markov model. After constructing an inference scheme which combines slice sampling and dynamic programming we demonstrate how the infinite factorial hidden Markov model can be used for blind source separation.
first_indexed 2024-03-07T06:13:31Z
format Journal article
id oxford-uuid:f056a31a-2825-4e30-8b2b-1c08d95f0391
institution University of Oxford
language English
last_indexed 2024-03-07T06:13:31Z
publishDate 2009
record_format dspace
spelling oxford-uuid:f056a31a-2825-4e30-8b2b-1c08d95f03912022-03-27T11:47:00ZThe infinite factorial hidden Markov modelJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f056a31a-2825-4e30-8b2b-1c08d95f0391EnglishSymplectic Elements at Oxford2009Van Gael, JTeh, YGhahramani, ZWe introduce a new probability distribution over a potentially infinite number of binary Markov chains which we call the Markov Indian buffet process. This process extends the IBP to allow temporal dependencies in the hidden variables. We use this stochastic process to build a nonparametric extension of the factorial hidden Markov model. After constructing an inference scheme which combines slice sampling and dynamic programming we demonstrate how the infinite factorial hidden Markov model can be used for blind source separation.
spellingShingle Van Gael, J
Teh, Y
Ghahramani, Z
The infinite factorial hidden Markov model
title The infinite factorial hidden Markov model
title_full The infinite factorial hidden Markov model
title_fullStr The infinite factorial hidden Markov model
title_full_unstemmed The infinite factorial hidden Markov model
title_short The infinite factorial hidden Markov model
title_sort infinite factorial hidden markov model
work_keys_str_mv AT vangaelj theinfinitefactorialhiddenmarkovmodel
AT tehy theinfinitefactorialhiddenmarkovmodel
AT ghahramaniz theinfinitefactorialhiddenmarkovmodel
AT vangaelj infinitefactorialhiddenmarkovmodel
AT tehy infinitefactorialhiddenmarkovmodel
AT ghahramaniz infinitefactorialhiddenmarkovmodel