A multi-centre polyp detection and segmentation dataset for generalisability assessment
<p>Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However,...
Egile Nagusiak: | Ali, S, Jha, D, Ghatwary, N, Realdon, S, Cannizzaro, R, Salem, OE, Lamarque, D, Daul, C, Riegler, MA, Anonsen, KV, Petlund, A, Halvorsen, P, Rittscher, J, de Lange, T, East, JE |
---|---|
Formatua: | Journal article |
Hizkuntza: | English |
Argitaratua: |
Springer Nature
2023
|
Antzeko izenburuak
-
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
nork: Ali, S, et al.
Argitaratua: (2024) -
Assessing generalisability of deep learning-based polyp detection and segmentation methods through a computer vision challenge
nork: Ali, S, et al.
Argitaratua: (2022) -
Real-time polyp detection, localization and segmentation in colonoscopy using deep learning
nork: Jha, D, et al.
Argitaratua: (2021) -
Artificial intelligence for colonoscopic polyp detection: High performance versus human nature
nork: East, JE, et al.
Argitaratua: (2020) -
FANet: a feedback attention network for improved biomedical image segmentation
nork: Tomar, NK, et al.
Argitaratua: (2022)