Exciton localization in disordered poly(3-hexylthiophene).
Singlet exciton localization in conformationally disordered poly(3-hexylthiophene) (P3HT) is investigated via configuration interaction (singles) calculations of the Pariser-Parr-Pople model. The P3HT structures are generated by molecular dynamics simulations. The lowest-lying excitons are spatially...
Hlavní autoři: | , , , |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2010
|
Shrnutí: | Singlet exciton localization in conformationally disordered poly(3-hexylthiophene) (P3HT) is investigated via configuration interaction (singles) calculations of the Pariser-Parr-Pople model. The P3HT structures are generated by molecular dynamics simulations. The lowest-lying excitons are spatially localized, space filling, and nonoverlapping. These define spectroscopic segments or chromophores. The strong conformational disorder in P3HT causes breaks in the pi-conjugation. Depending on the relative values of the disorder-induced localization length and the distances between the pi-conjugation breaks, these breaks sometimes serve to pin the low-lying localized excitons. The exciton confinement also causes a local spectrum of low-lying exciton states. Coulomb-induced intra- or interchain interactions between spectroscopic segments in close spatial proximity can delocalize an exciton across these segments, in principle causing phase coherent transition dipole moments. |
---|