Mapping coherence in measurement via full quantum tomography of a hybrid optical detector
Quantum states and measurements exhibit wave-like (continuous) or particle-like (discrete) character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena1-3, generating superpositions of macroscopic states4, and form essential resources for quantum-enha...
Main Authors: | , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2012
|
_version_ | 1797103169167163392 |
---|---|
author | Zhang, L Coldenstrodt-Ronge, H Datta, A Puentes, G Lundeen, J Jin, X Smith, B Plenio, M Walmsley, I |
author_facet | Zhang, L Coldenstrodt-Ronge, H Datta, A Puentes, G Lundeen, J Jin, X Smith, B Plenio, M Walmsley, I |
author_sort | Zhang, L |
collection | OXFORD |
description | Quantum states and measurements exhibit wave-like (continuous) or particle-like (discrete) character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena1-3, generating superpositions of macroscopic states4, and form essential resources for quantum-enhanced applications5 such as entanglement distillation6,7 and quantum computation8, as well as highly efficient optical telecommunications9,10. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to non-commuting observables such as field quadrature amplitude and photon number11-13. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parameterization to date in quantum tomography experiments, requiring the development of novel theoretical tools. Our results reveal the role of coherence in quantum measurements and demonstrate the tunability of hybrid quantum-optical detectors. © 2012 Macmillan Publishers Limited. All rights reserved. |
first_indexed | 2024-03-07T06:16:16Z |
format | Journal article |
id | oxford-uuid:f12d88aa-6c69-43ca-850a-70dba62ade83 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T06:16:16Z |
publishDate | 2012 |
record_format | dspace |
spelling | oxford-uuid:f12d88aa-6c69-43ca-850a-70dba62ade832022-03-27T11:54:06ZMapping coherence in measurement via full quantum tomography of a hybrid optical detectorJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f12d88aa-6c69-43ca-850a-70dba62ade83EnglishSymplectic Elements at Oxford2012Zhang, LColdenstrodt-Ronge, HDatta, APuentes, GLundeen, JJin, XSmith, BPlenio, MWalmsley, IQuantum states and measurements exhibit wave-like (continuous) or particle-like (discrete) character. Hybrid discrete-continuous photonic systems are key to investigating fundamental quantum phenomena1-3, generating superpositions of macroscopic states4, and form essential resources for quantum-enhanced applications5 such as entanglement distillation6,7 and quantum computation8, as well as highly efficient optical telecommunications9,10. Realizing the full potential of these hybrid systems requires quantum-optical measurements sensitive to non-commuting observables such as field quadrature amplitude and photon number11-13. However, a thorough understanding of the practical performance of an optical detector interpolating between these two regions is absent. Here, we report the implementation of full quantum detector tomography, enabling the characterization of the simultaneous wave and photon-number sensitivities of quantum-optical detectors. This yields the largest parameterization to date in quantum tomography experiments, requiring the development of novel theoretical tools. Our results reveal the role of coherence in quantum measurements and demonstrate the tunability of hybrid quantum-optical detectors. © 2012 Macmillan Publishers Limited. All rights reserved. |
spellingShingle | Zhang, L Coldenstrodt-Ronge, H Datta, A Puentes, G Lundeen, J Jin, X Smith, B Plenio, M Walmsley, I Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title | Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title_full | Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title_fullStr | Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title_full_unstemmed | Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title_short | Mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
title_sort | mapping coherence in measurement via full quantum tomography of a hybrid optical detector |
work_keys_str_mv | AT zhangl mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT coldenstrodtrongeh mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT dattaa mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT puentesg mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT lundeenj mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT jinx mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT smithb mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT pleniom mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector AT walmsleyi mappingcoherenceinmeasurementviafullquantumtomographyofahybridopticaldetector |