Computational network models for molecular, neuronal and brain data in the presence of long range dependence
<p>Standard parametric statistical approaches based on comparison to global activity tend to perform poorly when this activity varies over multiple scales. Such multiscale variation, termed long range dependence, is a well-documented features of many biological and neurological data sets. We p...
Autor principal: | Wilsenach, J |
---|---|
Altres autors: | Reinert, G |
Format: | Thesis |
Idioma: | English |
Publicat: |
2021
|
Matèries: |
Ítems similars
-
Whole-brain comparison of rodent and human brains using spatial transcriptomics
per: Antoine Beauchamp, et al.
Publicat: (2022-11-01) -
Editorial: Neuroinformatics of large-scale brain modelling
per: John D. Griffiths, et al.
Publicat: (2022-10-01) -
FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research
per: Brendan Behan, et al.
Publicat: (2023-05-01) -
FAIR African brain data: challenges and opportunities
per: Eberechi Wogu, et al.
Publicat: (2025-03-01) -
Editorial: Rising stars in systems neuroscience: 2022
per: Mazyar Fallah, et al.
Publicat: (2024-05-01)