Computational network models for molecular, neuronal and brain data in the presence of long range dependence
<p>Standard parametric statistical approaches based on comparison to global activity tend to perform poorly when this activity varies over multiple scales. Such multiscale variation, termed long range dependence, is a well-documented features of many biological and neurological data sets. We p...
Autor Principal: | Wilsenach, J |
---|---|
Outros autores: | Reinert, G |
Formato: | Thesis |
Idioma: | English |
Publicado: |
2021
|
Subjects: |
Títulos similares
-
Whole-brain comparison of rodent and human brains using spatial transcriptomics
por: Antoine Beauchamp, et al.
Publicado: (2022-11-01) -
Editorial: Neuroinformatics of large-scale brain modelling
por: John D. Griffiths, et al.
Publicado: (2022-10-01) -
FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research
por: Brendan Behan, et al.
Publicado: (2023-05-01) -
FAIR African brain data: challenges and opportunities
por: Eberechi Wogu, et al.
Publicado: (2025-03-01) -
Editorial: Rising stars in systems neuroscience: 2022
por: Mazyar Fallah, et al.
Publicado: (2024-05-01)