Computational network models for molecular, neuronal and brain data in the presence of long range dependence
<p>Standard parametric statistical approaches based on comparison to global activity tend to perform poorly when this activity varies over multiple scales. Such multiscale variation, termed long range dependence, is a well-documented features of many biological and neurological data sets. We p...
第一著者: | Wilsenach, J |
---|---|
その他の著者: | Reinert, G |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2021
|
主題: |
類似資料
-
Whole-brain comparison of rodent and human brains using spatial transcriptomics
著者:: Antoine Beauchamp, 等
出版事項: (2022-11-01) -
Editorial: Neuroinformatics of large-scale brain modelling
著者:: John D. Griffiths, 等
出版事項: (2022-10-01) -
FAIR in action: Brain-CODE - A neuroscience data sharing platform to accelerate brain research
著者:: Brendan Behan, 等
出版事項: (2023-05-01) -
FAIR African brain data: challenges and opportunities
著者:: Eberechi Wogu, 等
出版事項: (2025-03-01) -
Editorial: Rising stars in systems neuroscience: 2022
著者:: Mazyar Fallah, 等
出版事項: (2024-05-01)