Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.

The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the...

Full description

Bibliographic Details
Main Authors: Hoerder-Suabedissen, A, Wang, W, Lee, S, Davies, K, Goffinet, A, Rakić, S, Parnavelas, J, Reim, K, Nicolić, M, Paulsen, O, Molnár, Z
Format: Journal article
Language:English
Published: 2009
_version_ 1797103190129246208
author Hoerder-Suabedissen, A
Wang, W
Lee, S
Davies, K
Goffinet, A
Rakić, S
Parnavelas, J
Reim, K
Nicolić, M
Paulsen, O
Molnár, Z
author_facet Hoerder-Suabedissen, A
Wang, W
Lee, S
Davies, K
Goffinet, A
Rakić, S
Parnavelas, J
Reim, K
Nicolić, M
Paulsen, O
Molnár, Z
author_sort Hoerder-Suabedissen, A
collection OXFORD
description The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is essential. Only by determining the molecular taxonomy of this diverse class of neurons can we identify the subpopulations that may contribute differentially to cortical development. We identified novel markers for murine subplate cells by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach. We examined the utility of these markers in well-characterized mutants (reeler, scrambler, and p35-KO) where the subplate is displaced in relation to the cortical plate. In situ hybridization or immunohistochemistry confirmed subplate-selective expression of complexin 3, connective tissue growth factor, nuclear receptor-related 1/Nr4a2, and monooxygenase Dbh-like 1 while transmembrane protein 163 also had additional expression in layer 5, and DOPA decarboxylase was also present in the white matter. Localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of subplate cells. These new markers open up possibilities for further identification of subplate subpopulations in research and in neuropathological diagnosis.
first_indexed 2024-03-07T06:16:35Z
format Journal article
id oxford-uuid:f146138c-28ef-41af-9918-565f9027aa47
institution University of Oxford
language English
last_indexed 2024-03-07T06:16:35Z
publishDate 2009
record_format dspace
spelling oxford-uuid:f146138c-28ef-41af-9918-565f9027aa472022-03-27T11:54:49ZNovel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:f146138c-28ef-41af-9918-565f9027aa47EnglishSymplectic Elements at Oxford2009Hoerder-Suabedissen, AWang, WLee, SDavies, KGoffinet, ARakić, SParnavelas, JReim, KNicolić, MPaulsen, OMolnár, ZThe subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is essential. Only by determining the molecular taxonomy of this diverse class of neurons can we identify the subpopulations that may contribute differentially to cortical development. We identified novel markers for murine subplate cells by comparing gene expression of subplate and layer 6 of primary visual and somatosensory cortical areas of postnatal day (P)8 old mice using a microarray-based approach. We examined the utility of these markers in well-characterized mutants (reeler, scrambler, and p35-KO) where the subplate is displaced in relation to the cortical plate. In situ hybridization or immunohistochemistry confirmed subplate-selective expression of complexin 3, connective tissue growth factor, nuclear receptor-related 1/Nr4a2, and monooxygenase Dbh-like 1 while transmembrane protein 163 also had additional expression in layer 5, and DOPA decarboxylase was also present in the white matter. Localization of marker-positive cells in the reeler and p35-KO cortices suggests different subpopulations of subplate cells. These new markers open up possibilities for further identification of subplate subpopulations in research and in neuropathological diagnosis.
spellingShingle Hoerder-Suabedissen, A
Wang, W
Lee, S
Davies, K
Goffinet, A
Rakić, S
Parnavelas, J
Reim, K
Nicolić, M
Paulsen, O
Molnár, Z
Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title_full Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title_fullStr Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title_full_unstemmed Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title_short Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.
title_sort novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex
work_keys_str_mv AT hoerdersuabedissena novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT wangw novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT lees novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT daviesk novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT goffineta novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT rakics novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT parnavelasj novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT reimk novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT nicolicm novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT paulseno novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex
AT molnarz novelmarkersrevealsubpopulationsofsubplateneuronsinthemurinecerebralcortex