Normobaric hypoxia impairs human cardiac energetics

Hypoxia causes left ventricular dysfunction in the human heart, but the biochemical mechanism is poorly understood. Here, we tested whether short-term normobaric hypoxia leads to changes in cardiac energetics and early cardiac dysfunction. Healthy male volunteers (n=12, age 24±2 yr) were exposed to...

Cijeli opis

Bibliografski detalji
Glavni autori: Holloway, C, Cochlin, L, Codreanu, I, Bloch, E, Fatemian, M, Szmigielski, C, Atherton, H, Heather, L, Francis, J, Neubauer, S, Robbins, P, Montgomery, H, Clarke, K
Format: Journal article
Jezik:English
Izdano: 2011
Opis
Sažetak:Hypoxia causes left ventricular dysfunction in the human heart, but the biochemical mechanism is poorly understood. Here, we tested whether short-term normobaric hypoxia leads to changes in cardiac energetics and early cardiac dysfunction. Healthy male volunteers (n=12, age 24±2 yr) were exposed to normobaric hypoxia in a purpose-built hypoxic chamber. The partial pressure of oxygen during end-tidal expiration (P ETO 2) was kept between 50 and 60 mmHg, and peripheral oxygen saturation (SaO 2) was kept above 80%. Cardiac morphology and function were assessed using magnetic resonance imaging and echocardiography, both before and after 20 h of hypoxic exposure, and high-energy phosphate metabolism [measured as the phosphocreatine (PCr)/ATP ratio] was measured using 31P magnetic resonance spectroscopy. During hypoxia, P ETO 2 and SaO 2averaged 55 ± 1 mmHg and 83.6 ± 0.4%, respectively. Hypoxia caused a 15% reduction in cardiac PCr/ATP (from 2.0±0.1 to 1.7<0.1, P<0.01) and reduced diastolic function (measured as E/E′, rising from 6.1±0.4 to 7.5±0.7, P<0.01). Normobaric hypoxia causes a rapid decrease in high-energy phosphate metabolism in the human cardiac left ventricle, which may lead to a decline in diastolic function. These findings are important in understanding the response of normal individuals to environmental hypoxia, and to situations in which disease reduces cardiac oxygen delivery. © FASEB.