On recognising nearly single-crossing preferences

If voters' preferences are one-dimensional, many hard problems in computational social choice become tractable. A preference profile can be classified as one-dimensional if it has the single-crossing property, which requires that the voters can be ordered from left to right so that their prefer...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Jaeckle, F, Peters, D, Elkind, E
Định dạng: Conference item
Ngôn ngữ:English
Được phát hành: AAAI Press 2018
Miêu tả
Tóm tắt:If voters' preferences are one-dimensional, many hard problems in computational social choice become tractable. A preference profile can be classified as one-dimensional if it has the single-crossing property, which requires that the voters can be ordered from left to right so that their preferences are consistent with this order. In practice, preferences may exhibit some one-dimensional structure, despite not being single-crossing in the formal sense. Hence, we ask whether one can identify preference profiles that are close to being single-crossing. We consider three distance measures, which are based on partitioning voters or candidates or performing a small number of swaps in each vote. We prove that it can be efficiently decided if voters can be split into two single-crossing groups. Also, for every fixed k >= 1 we can decide in polynomial time if a profile can be made single-crossing by performing at most k candidate swaps per vote. In contrast, for each k >= 3 it is NP-complete to decide whether candidates can be partitioned into k sets so that the restriction of the input profile to each set is single-crossing.