Thermally induced suppression of interchain interactions in dilute aqueous solutions of conjugated polyelectrolyte rotaxanes and their analogues

We use steady-state and nanosecond time-resolved photoluminescence spectroscopy to investigate the evolution of packing interactions in dilute solutions of a sulfonated poly(diphenylenevinylene) lithium salt and its cyclodextrin-threaded polyrotaxanes as a function of the threading ratio (TR) when i...

Full description

Bibliographic Details
Main Authors: Tregnago, G, Afshar, A, McDonnell, SO, Anderson, HL, Cacialli, F
Format: Journal article
Published: AIP Publishing 2017
Description
Summary:We use steady-state and nanosecond time-resolved photoluminescence spectroscopy to investigate the evolution of packing interactions in dilute solutions of a sulfonated poly(diphenylenevinylene) lithium salt and its cyclodextrin-threaded polyrotaxanes as a function of the threading ratio (TR) when increasing the temperature from 10 to 40 °C. Contrary to the expectation of a temperature-induced increase of packing and aggregation, supported by previous Raman studies identifying a temperature-induced reduction in the inter-phenyl torsion angles, we find clear spectral (photoluminescence blue-shift and narrowing) and dynamic (shorter lifetimes and reduced weight of the long-lived components) signatures of a reduction of interchain interactions for the polyelectrolytes at higher temperatures with TR up to 1.3.