Relatively hyperbolic groups with fixed peripherals

We build quasi-isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors. We prove that, given any finite collection of finitely generated groups H each of which...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Cordes, M, Hume, DS
বিন্যাস: Journal article
ভাষা:English
প্রকাশিত: Springer 2019
বিবরন
সংক্ষিপ্ত:We build quasi-isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors. We prove that, given any finite collection of finitely generated groups H each of which either has finite stable dimension or is non-relatively hyperbolic, there exist infinitely many quasi-isometry types of one-ended groups which are hyperbolic relative to H. The groups are constructed using classical small cancellation theory over free products.