On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling relational data, they impose a strong assumption on the availability of the node or edge features of the graph. In many real-world applications, however, features are only partially available; for example, in...
المؤلفون الرئيسيون: | Rossi, E, Kenlay, H, Gorinova, MI, Chamberlain, BP, Dong, X, Bronstein, M |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Proceedings of Machine Learning Research
2022
|
مواد مشابهة
-
Listening to Unreason: Foucault and Wittgenstein on Reason and the Unreasonable Man
حسب: Liat Lavi
منشور في: (2018-10-01) -
The age of unreason /
حسب: 258599 Handy, Charles B.
منشور في: (1989) -
The age of unreason /
حسب: 258599 Handy, Charles B.
منشور في: (1991) -
Robustness analysis of graph-based machine learning
حسب: Kenlay, H
منشور في: (2022) -
CTCs 2020: Great Expectations or Unreasonable Dreams
حسب: Elisabetta Rossi, وآخرون
منشور في: (2019-08-01)