On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling relational data, they impose a strong assumption on the availability of the node or edge features of the graph. In many real-world applications, however, features are only partially available; for example, in...
Κύριοι συγγραφείς: | Rossi, E, Kenlay, H, Gorinova, MI, Chamberlain, BP, Dong, X, Bronstein, M |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Proceedings of Machine Learning Research
2022
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Listening to Unreason: Foucault and Wittgenstein on Reason and the Unreasonable Man
ανά: Liat Lavi
Έκδοση: (2018-10-01) -
The age of unreason /
ανά: 258599 Handy, Charles B.
Έκδοση: (1989) -
The age of unreason /
ανά: 258599 Handy, Charles B.
Έκδοση: (1991) -
Robustness analysis of graph-based machine learning
ανά: Kenlay, H
Έκδοση: (2022) -
CTCs 2020: Great Expectations or Unreasonable Dreams
ανά: Elisabetta Rossi, κ.ά.
Έκδοση: (2019-08-01)