On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling relational data, they impose a strong assumption on the availability of the node or edge features of the graph. In many real-world applications, however, features are only partially available; for example, in...
Hoofdauteurs: | Rossi, E, Kenlay, H, Gorinova, MI, Chamberlain, BP, Dong, X, Bronstein, M |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
Proceedings of Machine Learning Research
2022
|
Gelijkaardige items
-
Listening to Unreason: Foucault and Wittgenstein on Reason and the Unreasonable Man
door: Liat Lavi
Gepubliceerd in: (2018-10-01) -
The age of unreason /
door: 258599 Handy, Charles B.
Gepubliceerd in: (1989) -
The age of unreason /
door: 258599 Handy, Charles B.
Gepubliceerd in: (1991) -
Robustness analysis of graph-based machine learning
door: Kenlay, H
Gepubliceerd in: (2022) -
CTCs 2020: Great Expectations or Unreasonable Dreams
door: Elisabetta Rossi, et al.
Gepubliceerd in: (2019-08-01)