On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling relational data, they impose a strong assumption on the availability of the node or edge features of the graph. In many real-world applications, however, features are only partially available; for example, in...
Автори: | Rossi, E, Kenlay, H, Gorinova, MI, Chamberlain, BP, Dong, X, Bronstein, M |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Proceedings of Machine Learning Research
2022
|
Схожі ресурси
Схожі ресурси
-
Listening to Unreason: Foucault and Wittgenstein on Reason and the Unreasonable Man
за авторством: Liat Lavi
Опубліковано: (2018-10-01) -
The age of unreason /
за авторством: 258599 Handy, Charles B.
Опубліковано: (1989) -
The age of unreason /
за авторством: 258599 Handy, Charles B.
Опубліковано: (1991) -
Robustness analysis of graph-based machine learning
за авторством: Kenlay, H
Опубліковано: (2022) -
CTCs 2020: Great Expectations or Unreasonable Dreams
за авторством: Elisabetta Rossi, та інші
Опубліковано: (2019-08-01)