Finding a low-rank basis in a matrix subspace
For a given matrix subspace, how can we find a basis that consists of low-rank matrices? This is a generalization of the sparse vector problem. It turns out that when the subspace is spanned by rank-1 matrices, the matrices can be obtained by the tensor CP decomposition. For the higher rank case, th...
Главные авторы: | Nakatsukasa, Y, Soma, T, Uschmajew, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Verlag
2016
|
Схожие документы
-
On orthogonal tensors and best rank-one approximation ratio
по: Li, Z, и др.
Опубликовано: (2018) -
Low-rank matrix approximations over canonical subspaces
по: Achiya Dax
Опубликовано: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
по: Achiya Dax
Опубликовано: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
по: Achiya Dax
Опубликовано: (2020-09-01) -
Low-rank matrix approximations over canonical subspaces
по: Achiya Dax
Опубликовано: (2020-09-01)