Charge order from orbital-dependent coupling evidenced by NbSe2

Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which c...

Full description

Bibliographic Details
Main Authors: Flicker, F, van Wezel, J
Format: Journal article
Language:English
Published: Springer Nature 2015
Description
Summary:Niobium diselenide has long served as a prototype of two-dimensional charge ordering, believed to arise from an instability of the electronic structure analogous to the one-dimensional Peierls mechanism. Despite this, various anomalous properties have recently been identified experimentally, which cannot be explained by Peierls-like weak-coupling theories. Here, we consider instead a model with strong electron–phonon coupling, taking into account both the full momentum and orbital dependence of the coupling matrix elements. We show that both are necessary for a consistent description of the full range of experimental observations. We argue that NbSe2 is typical in this sense, and that any charge-ordered material in more than one dimension will generically be shaped by the momentum and orbital dependence of its electron–phonon coupling as well as its electronic structure. The consequences will be observable in many charge-ordered materials, including cuprate superconductors.