Rates of decay in the classical Katznelson-Tzafriri theorem

The Katznelson-Tzafriri Theorem states that, given a powerbounded operator T , T n(I − T ) → 0 as n → ∞ if and only if the spectrum σ(T ) of T intersects the unit circle T in at most the point 1. This paper investigates the rate at which decay takes place when σ(T ) ∩ T = {1}. The results obtained l...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Seifert, D
বিন্যাস: Journal article
প্রকাশিত: Hebrew University Magnes Press 2016
বিবরন
সংক্ষিপ্ত:The Katznelson-Tzafriri Theorem states that, given a powerbounded operator T , T n(I − T ) → 0 as n → ∞ if and only if the spectrum σ(T ) of T intersects the unit circle T in at most the point 1. This paper investigates the rate at which decay takes place when σ(T ) ∩ T = {1}. The results obtained lead, in particular, to both upper and lower bounds on this rate of decay in terms of the growth of the resolvent operator R(eiθ , T ) as θ → 0. In the special case of polynomial resolvent growth, these bounds are then shown to be optimal for general Banach spaces but not in the Hilbert space case.