Partial sum process of orthogonal series as rough process
<p>In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and...
Hlavní autor: | Yang, D |
---|---|
Další autoři: | Lyons, T |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2012
|
Témata: |
Podobné jednotky
-
The partial sum process of orthogonal expansion as geometric rough
process with Fourier series as an example---an improvement of
Menshov-Rademacher theorem
Autor: Yang, D, a další
Vydáno: (2011) -
Orthogonal transforms for digital signal processing /
Autor: 230635 Ahmed, Nasir
Vydáno: (1975) -
Eisenstein series and convolution sums
Autor: Aygin, Zafer Selcuk
Vydáno: (2020) -
The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
Autor: Fan Yang, a další
Vydáno: (2022-01-01) -
Rough analysis and stochastic partial differential equations
Autor: Jin, R
Vydáno: (2024)