Partial sum process of orthogonal series as rough process
<p>In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and...
Autor principal: | Yang, D |
---|---|
Otros Autores: | Lyons, T |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
2012
|
Materias: |
Ejemplares similares
-
The partial sum process of orthogonal expansion as geometric rough
process with Fourier series as an example---an improvement of
Menshov-Rademacher theorem
por: Yang, D, et al.
Publicado: (2011) -
Orthogonal transforms for digital signal processing /
por: 230635 Ahmed, Nasir
Publicado: (1975) -
Eisenstein series and convolution sums
por: Aygin, Zafer Selcuk
Publicado: (2020) -
The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
por: Fan Yang, et al.
Publicado: (2022-01-01) -
Rough analysis and stochastic partial differential equations
por: Jin, R
Publicado: (2024)