Partial sum process of orthogonal series as rough process
<p>In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and...
Päätekijä: | Yang, D |
---|---|
Muut tekijät: | Lyons, T |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2012
|
Aiheet: |
Samankaltaisia teoksia
-
The partial sum process of orthogonal expansion as geometric rough
process with Fourier series as an example---an improvement of
Menshov-Rademacher theorem
Tekijä: Yang, D, et al.
Julkaistu: (2011) -
Orthogonal transforms for digital signal processing /
Tekijä: 230635 Ahmed, Nasir
Julkaistu: (1975) -
Eisenstein series and convolution sums
Tekijä: Aygin, Zafer Selcuk
Julkaistu: (2020) -
The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
Tekijä: Fan Yang, et al.
Julkaistu: (2022-01-01) -
Rough analysis and stochastic partial differential equations
Tekijä: Jin, R
Julkaistu: (2024)