Partial sum process of orthogonal series as rough process
<p>In this thesis, we investigate the pathwise regularity of partial sum process of general orthogonal series, and prove that the partial sum process is a geometric 2-rough process under the same condition as in Menshov-Rademacher Theorem. For Fourier series, the condition can be improved, and...
Главный автор: | Yang, D |
---|---|
Другие авторы: | Lyons, T |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2012
|
Предметы: |
Схожие документы
-
The partial sum process of orthogonal expansion as geometric rough
process with Fourier series as an example---an improvement of
Menshov-Rademacher theorem
по: Yang, D, и др.
Опубликовано: (2011) -
Orthogonal transforms for digital signal processing /
по: 230635 Ahmed, Nasir
Опубликовано: (1975) -
Eisenstein series and convolution sums
по: Aygin, Zafer Selcuk
Опубликовано: (2020) -
The infinite sums of reciprocals and the partial sums of Chebyshev polynomials
по: Fan Yang, и др.
Опубликовано: (2022-01-01) -
Rough analysis and stochastic partial differential equations
по: Jin, R
Опубликовано: (2024)